Behavior of susceptible-infected-susceptible epidemics on heterogeneous networks with saturation.
نویسندگان
چکیده
We investigate saturation effects in susceptible-infected-susceptible models of the spread of epidemics in heterogeneous populations. The structure of interactions in the population is represented by networks with connectivity distribution P(k), including scale-free (SF) networks with power law distributions P(k) approximately k(-gamma). Considering cases where the transmission of infection between nodes depends on their connectivity, we introduce a saturation function C(k) which reduces the infection transmission rate lambda across an edge going from a node with high connectivity k. A mean-field approximation with the neglect of degree-degree correlation then leads to a finite threshold lambda(c) >0 for SF networks with 2<gamma</=3. We also find, in this approximation, the fraction of infected individuals among those with degree k for lambda close to lambda(c). We investigate via computer simulation the contact process on a heterogeneous regular lattice and compare the results with those obtained from mean-field theory with and without neglect of degree-degree correlations.
منابع مشابه
Non-Markovian Infection Spread Dramatically Alters the Susceptible-Infected-Susceptible Epidemic Threshold in Networks
Most studies on susceptible-infected-susceptible epidemics in networks implicitly assume Markovian behavior: the time to infect a direct neighbor is exponentially distributed. Much effort so far has been devoted to characterize and precisely compute the epidemic threshold in susceptible-infected-susceptible Markovian epidemics on networks. Here, we report the rather dramatic effect of a nonexpo...
متن کاملNon-Markovian infection spread dramatically alters the susceptible-infected-susceptible epidemic threshold in networks.
Most studies on susceptible-infected-susceptible epidemics in networks implicitly assume Markovian behavior: the time to infect a direct neighbor is exponentially distributed. Much effort so far has been devoted to characterize and precisely compute the epidemic threshold in susceptible-infected-susceptible Markovian epidemics on networks. Here, we report the rather dramatic effect of a nonexpo...
متن کاملNodal infection in Markovian susceptible-infected-susceptible and susceptible-infected-removed epidemics on networks are non-negatively correlated.
By invoking the famous Fortuin, Kasteleyn, and Ginibre (FKG) inequality, we prove the conjecture that the correlation of infection at the same time between any pair of nodes in a network cannot be negative for (exact) Markovian susceptible-infected-susceptible (SIS) and susceptible-infected-removed (SIR) epidemics on networks. The truth of the conjecture establishes that the N-intertwined mean-...
متن کاملHeterogeneous Epidemic Model for Assessing Data Dissemination in Opportunistic Networks
In this paper we investigate a susceptible-infected-susceptible (SIS) epidemic model describing data dissemination in opportunistic networks with heterogeneous setting of transmission parameters. We obtained the estimation of the final epidemic size assuming that amount of data transferred between network nodes possesses a Pareto distribution, implying scale-free properties. In this context, mo...
متن کاملEpidemic extinction paths in complex networks.
We study the extinction of long-lived epidemics on finite complex networks induced by intrinsic noise. Applying analytical techniques to the stochastic susceptible-infected-susceptible model, we predict the distribution of large fluctuations, the most probable or optimal path through a network that leads to a disease-free state from an endemic state, and the average extinction time in general c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 69 6 Pt 2 شماره
صفحات -
تاریخ انتشار 2004